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FINITE-LEVEL QUANTIZED SYNCHRONIZATION OF
DISCRETE-TIME LINEAR MULTIAGENT SYSTEMS WITH

SWITCHING TOPOLOGIES∗

YANG MENG† , TAO LI‡ , AND JI-FENG ZHANG§

Abstract. In this paper, the synchronization of discrete-time linear multiagent systems is stud-
ied with finite communication data rate and switching topology flows. A class of quantized-observer-
based communication schemes and a class of certainty-equivalence-principle-based cooperative con-
trol laws are proposed with adaptive encoders and decoders. It is shown that if the pairs of agents’
state matrices and control matrices multiplied by Laplacian eigenvalues of the weakly connected
components are simultaneously stabilizable, and the communication topology flow is frequently con-
nected, then there exist such protocols leading to synchronization exponentially fast. Furthermore,
only finite bits of information exchange per step are required to guarantee the synchronization if
the communication channels are frequently active. For first-order dynamics, the dwell time and the
number of bits are both related to the unstable mode of agent dynamics, the number of agents, the
frequency of connectivity, and the Laplacian eigenvalue ratio of the switching topology flow.
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1. Introduction. With the rapid development of information technology, con-
trol systems evolve from single-agent systems to large-scale networked multiagent
systems. In recent years, the communication and cooperative control of multiagent
systems attracts more and more attention of scholars and engineers, for example, the
tracking control of unmanned air vehicles and the formation control of robot teams.
Many scholars have made great efforts to study the synchronization or consensus
problem, which is the most basic issue of the cooperative control. They established
fruitful theoretical results and engineering applications successfully [1], [2], [3], [4].

In early studies, it is always assumed that the communication channels have in-
finite bandwidths and are capable of transmitting real-valued information precisely.
However, the bandwidths of communication channels are always finite in real net-
works. By using digital communication techniques, the information exchange between
agents is an integrated progress of encoding, transmitting, and decoding [5]. From
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this point, the study of synchronization problems with digital communication is of
both theoretical and practical importance [6], [7], [8], [9].

For the case with fixed topologies, Kashyap, Basar, and Srikant [6] first studied
the quantized consensus of multiagent systems. Assuming each agent holds an integer
state, the authors designed a “gossip” protocol to drive all agents’ states to an integer
approximation of the average of their initial values. In [5], Carli, Bullo, and Zampieri
designed encoders and decoders based on infinite-level logarithmic quantizers and
proved that the system will achieve precise average consensus if the quantization den-
sity is sufficiently high. Li et al. [8] proposed a dynamic encoding-decoding scheme
with finite-level uniform quantizers and vanishing scaling functions. They proved that
the system can achieve average consensus exponentially fast with a single bit infor-
mation exchange per time step. You and Xie [9] studied the synchronization of linear
multiagent systems and proved that if each agent is stabilizable, and the product
of its unstable modes is less than an upper bound depending on the structure of the
network topology, then there exist proper communication and control protocols to en-
sure synchronization. In addition to the data-rate constraint, the switching of network
topologies due to packet losses, link failures, or high-level commands is another kind
of uncertainty in multiagent systems. Li and Xie [10] studied the quantized averaging
of integrator systems under bidirectional information communication. They proposed
a class of adaptive quantized communication schemes such that each agent adjusts the
range of quantization dynamically according to the information communication with
neighbors. By algebraic graph theory, Lyapunov method, and the stability of time-
varying systems, it is proved that if the network topology flow is jointly connected,
then 3 bits of information exchange per time step suffice for the system to achieve aver-
age consensus. Zhang and Zhang [11] and Li et al. [12] studied the synchronization of
integrators over unidirectional switching networks. Zhang and Zhang [11] proved that
if the network topology flow jointly contains spanning trees and is always balanced,
then the system achieves average consensus by properly designing the quantization
parameters. Li et al. [12] extended the results of [10] and [11] to general unbalanced
switching topology flows. They proved that if the network topology flow is jointly
strongly connected, each agent sends 3-bits information to its neighbor and 1-bit in-
formation to itself at each step, then the system achieves synchronization. Olshevsky
[13] considered distributed consensus under ternary information exchange and proved
that for a class of time-varying undirected graphs under some connectivity conditions,
the proposed protocol can ensure average consensus with a polynomial convergence
time. More recent results on consensus with quantized communication can be found
in [14], [15], [16], [17], [18], and the references therein.

The above literature on quantized synchronization with switching topologies all
focus on integrator dynamics, while for general linear dynamics, most of the existing
literature focus on the case with precise communication. In [19], Wang, Cheng, and
Hu proved that for continuous-time controllable linear multiagent systems, distributed
control protocols can be found to ensure synchronization if the network topology
flow is frequently connected with a positive dwell time. For neutrally stable agent
dynamics, Su and Huang [20] proved that the synchronization can be achieved if
the network topology flow is jointly connected. By using the nonnegative matrix
theory, Qin, Gao, and Yu [21] proved that unstable agents with full row rank input
matrices can achieve exponential synchronization if the communication topologies
jointly have spanning trees frequently. As we know, up to now, there is no study
on the synchronization of general linear multisystems with finite communication data
rate and switching topology flows.
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In this paper, we study the synchronization of discrete-time linear multiagent
systems with finite communication data rate and switching topologies. Compared
with former works, the problem has the following new challenges: (i) different from
the fixed topology case [8], [9], the quantized synchronization with switching topology
flows requires each agent to observe its neighbors’s states with intermittent informa-
tion. It means that the state observation scheme should be adaptive to the interrup-
tion of information communication caused by the network topology switching. For
the communication among agents, the switching of network topologies also leads to
information mismatching between the senders and the receivers, so the broadcasting
type encoders and decoders proposed in [8] cannot be used here; (ii) different from the
case with neutrally stable agent dynamics, if there is an unstable mode in agent dy-
namics, then the closed-loop system will diverge exponentially during the period that
the network topology is not strongly connected. The divergence of synchronization
errors in such periods should be well estimated and restrained such that the stability
of the closed-loop system is not affected; (iii) the coupling among the above difficulties
due to the agent dynamics, switching topology flows, and the quantization nonlinear-
ity makes the closed-loop analysis much more difficult. In this paper, we propose
a class of quantized-observer-based dynamic communication schemes and certainty-
equivalence-principle-based control laws. To avoid information mismatching between
the senders’ encoders and the receivers’ decoders, we adopt a channel-activeness-based
state updating rule for the encoder-decoder design. To avoid the saturation of quan-
tizers which may lead to the growth of quantization errors, we adjust the quantization
levels of each quantizer adaptively according to the status of the channels for the last
step. To estimate the divergence of the synchronization errors when the network
topology is not strongly connected, we use the weakly connected components of the
topology flow to regroup the agents and estimate the difference of every two agents’
states by calculating innergroup and intergroup distances. We show that if the net-
work topology flow is frequently connected with a large dwell time for those being
strongly connected, and there exist K ∈ R

m×n such that A− λiBK, i = 1, . . . , l, are
stable, where (A,B) is the pair of agents’ state and control matrices, λi, i = 1 . . . , l,
are nonzero eigenvalues of Lapalacian matrices of all weakly connected components
of the topology flow, then there exist communication and control protocols ensuring
synchronization exponentially fast. In addition, if the communication channels are
frequently active, then finite bits of information exchange per step can ensure the
exponential synchronization. Especially, for unstable first-order systems, the lower
bound of the dwell time and the upper bound of the number of bits are given in
quantitative relation to the unstable mode of agent dynamics, the number of agents,
the frequency of connectivity, and the synchronizability of the topology flow, which is
defined as the ratio of the smallest and largest nonzero Laplacian eigenvalues of the
connected components.

The rest of this paper is organized as follows. In section 2, we give some prelimi-
naries and formulate the problem to be studied. In section 3, we first consider the case
of precise communication, and then the case of finite-level quantized communication,
and give the main theorems of this paper. In section 4, we verify the effectiveness of
the theoretical results by numerical simulations. The concluding remarks and some
future topics are given in section 5.

The following notations will be used in this paper. Denote the column vector
with a proper dimension and all elements being 1 and the matrix with all elements
being 0 by 1 and 0, respectively. We use In (or I) to represent an identity matrix with
dimension n (or with a proper dimension). Denote the sets of real numbers, conjugate
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Fig. 1. Two weakly connected components of a digraph.

numbers, and nonnegative integers by R, C, and N, respectively, and Rn represents
the n-dimensional real space. For a vector X ∈ Rn or a matrix X ∈ Rn×m, its
transpose is denoted by XH , its Euclidean norm and the infinite norm are denoted by
‖X‖ and ‖X‖∞, respectively. The spectral radius of a matrix X is denoted by ρ(X ).
For two series of numbers f(k) and g(k), we say that f(k) = O(g(k)) if there exists a
positive constant C such that |f(k)| ≤ C|g(k)|, k ∈ N. For a real number r, we use
the notation �r� to represent the least integer larger than r. The Kronecker product,
denoted by ⊗, facilitates the manipulation of matrices by the following properties:
(1) (A ⊗ B)(C ⊗D) = (AC) ⊗ (BD); (2) (A ⊗ B)H = AH ⊗ BH . Denote the block
diagonal matrix with its diagonal matrices being A1, . . . , Ak by diag(A1, . . . , Ak). We
denote the open ball {X ∈ Rn|‖X‖∞ < r} by Br.

2. Preliminaries. In this section, we give some basic concepts in graph theory
and formulate the problem to be studied.

2.1. Basic concepts. For a digraph G = {V , E }, V = {1, . . . , N} is the node
set and E ⊆ V × V is the edge set. Denote the adjacency matrix of G by AG =
[aij ] ∈ RN×N . If (j, i) ∈ E , then aij = 1, otherwise aij = 0. Here, we assume
aii = 0, i = 1, . . . , N . We say that G is undirected if A H

G = AG . Denote the in-degree

and out-degree of node i by degini =
∑N

j=1 aij , deg
out
i =

∑N
j=1 aji, respectively, and

denote the degree matrix by DG = diag(degin1 , . . . , deginN ). We say that G is balanced
if degini = degouti , i = 1, . . . , N . The Laplacian matrix of G, denoted by LG , is defined
as LG = DG −AG , and its eigenvalues in an ascending order of real parts are denoted
by λ1(LG) = 0, λi(LG), i = 2, . . . , N . Denote the Jordan canonical of LG and the
associated transformation matrix by diag(0, JG

2 , . . . , J
G
kG ) and ΦG , respectively, that is,

ΦGLGΦ−1
G = diag(0, JG

2 , . . . , J
G
kG ). A sequence of edges (i1, i2), (i2, i3), . . . , (ik−1, ik)

is called a path from i1 to ik. For a digraph G = {V , E }, we say that G is strongly
connected if there is a path from each node to any other. An undirected graph G is
called connected if for each pair of nodes, there is a path between them. For a digraph
G = {V , E }, if there is a digraph G′

= {V ′
, E

′} such that V
′ ⊆ V and E

′ ⊆ E , then
G′

is called a subgraph of G, which is denoted by G′ ⊆ G. We say that G′
= {V ′

, E
′}

equals G′′
= {V ′′

, E
′′} if V

′
= V

′′
and E

′
= E

′′
. A subgraph G′

of the undirected
graph G is called a connected component if (i) G′

is connected, (ii) for any G′′ ⊆ G,
if G′ ⊆ G′′

and G′′
is not equal to G′

, then G′′
is disconnected. For a digraph G, its

mirror graph is an undirected graph, denoted by Ĝ = {V , Ê }, where (j, i) ∈ Ê if and
only if (i, j) ∈ E or (j, i) ∈ E . A subgraph G′

of the digraph G is called a weakly
connected component if Ĝ′

is a connected component of Ĝ. For example, the digraph
with nodes set {1, . . . , 6} in Figure 1 has two weakly connected components.

Given a piecewise constant switching signal σ(t): N → N, we can define a sequence
of switching digraphs {Gσ(t) = {V , Eσ(t)}, t ∈ N}. Define 0 = t0 < t1 < · · · < ti <
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ti+1 < · · · ≤ +∞ as the switching times of σ(t), such that Gσ(t) is fixed during each
interval [ti, ti+1), i ∈ N. If there is an integer j such that σ(t) is fixed for t ≥ tj , then
tj+1 = +∞. For a sequence of switching graphs Gσ(t), where 0 = t0 < t1 < · · · < ti <
ti+1 < · · · ≤ +∞ are the switching times, we call ti+1 − ti as the dwell time [19] of
graph Gσ(i), i = 1, 2, . . . .

2.2. Problem formulation. Consider a discrete-time multiagent system of N
agents with the following dynamics,

(2.1) xi(t+ 1) = Axi(t) +Bui(t), i = 1, . . . , N,

where xi(t) ∈ Rn and ui(t) ∈ Rm are the state and the control input of agent i. The
communication topology flow among agents is modeled by a sequence of switching
digraphs {Gσ(t), t ∈ N}, where σ(t): N → {1, . . . ,M}. An edge (j, i) ∈ Eσ(t) if and
only if the communication channel from agent j to agent i is active at time t; then
agent i is called the receiver and agent j is called the sender, or i’s neighbor. The set
of agent i’s neighbors at time t is denoted by Ni(t) = {j ∈ V |(j, i) ∈ Eσ(t)}. Denote
Ni =

⋂∞
k=1

⋃∞
t=k Ni(t). We have the following assumptions.

(A1) The eigenvalues of A are not all inside the unit circle.
(A2) The set Ni =

⋃∞
t=1 Ni(t).

The agent dynamics (2.1) together with the communication topology flow
{Gσ(t), t ∈ N}, is called a dynamic network [2], which is denoted by (A,B,Gσ(t)).

Let G =
{G|G is a weakly connected component of digraphs in {G1,G2, . . . ,GM}}.

Define Λ as the collections of all nonzero eigenvalues of the Laplacian matrices of
the digraphs in G . For the case where G1, . . . ,GM are undirected graphs, we denote
λM = maxλ∈Λ λ and λm = minλ∈Λ λ.

For the dynamic network (A,B,Gσ(t)), a control protocol is called distributed if
the control input of each agent depends only on the information of its own and its
neighbors. We say that the dynamic network (A,B,Gσ(t)) achieves synchronization
if there is a distributed control protocol such that the closed-loop system satisfies
limt→∞ ‖xi(t)− xj(t)‖ = 0, i, j = 1, . . . , N .

Remark 2.1. Note that Ni denotes the set of agents which are the neighbors of
agent i for an infinite number of times. (A2) implies that if a communication channel
to agent i is active at some time, then it is active for infinite times. For the asymptotic
properties of the dynamic network, the impact of the channels being active for finite
times is negligible. For saving resources, we only design communication protocols for
the communication channels being active for infinite times, and for the conciseness of
the closed-loop analysis, we make Assumption (A2).

In real digital networks, the communication channels have finite bandwidth and
the real-valued states are encoded into finite symbols before transmitting. The in-
formation communication is an integrated progress of encoding, transmitting, and
decoding. Our goal is to study under what conditions does there exist proper commu-
nication and control protocols to ensure the dynamic network achieves synchronization
with finite communication data rate and a switching network topology flow.

3. Main results. In this section, we give the main results of this paper. First,
for the case of precise communication, we present an exponential convergence result
under the frequently strongly connected condition. Then based on the exponential
convergence result for the case of precise communication, we propose a class of dy-
namic encoding-decoding communication schemes and a class of certainty-equivalence-
principle-based control protocols for the case of finite-level quantized communication.
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Conditions will be given on the existence of such a type of communication and control
protocols for ensuring all agents achieve synchronization.

3.1. Case of precise communication. We first consider the case of precise
communication, where the communication channels are capable of transmitting real-
valued information precisely. We have the following assumptions.

(A3) Gσ(t) is balanced, t ∈ N.
(A4) There exists a matrix K ∈ Rm×n, such that maxλ∈Λ ρ(A− λBK) < 1.
(A5) There is a constant T ≥ 1 such that for any given time t, there is t∗ ∈ [t, t+T ]

with Gσ(t∗) being strongly connected.
We consider the following class of distributed control protocols:

(3.1) ui(t) = K
∑

j∈Ni(t)

aij(t)(xj(t)− xi(t)), i = 1, . . . , N.

Let X(t) = (xH
1 (t), . . . , xH

N (t))H , U(t) = (uH
1 (t), . . . , uH

N(t))H , x̄(t) = ( 1
N 1H

N ⊗ In) ·
X(t), δi(t) = xi(t) − x̄(t) and δ(t) = (δH1 (t), . . . , δHN (t))H , which is called the syn-
chronization error. Denote C1 = maxG∈G ‖ΦG‖ and C2 = maxG∈G ‖Φ−1

G ‖. For a

matrix X ∈ Rm×n, denote A(LG ,X ) = I ⊗ A − diag(JG
2 , . . . , J

G
kG ) ⊗ BX , ρΛ(X ) =

maxG∈G ρ(A(LG ,X )), and Ω = {X ∈ Rm×n|ρΛ(X ) < 1}. Then it can be seen that Ω
is nonempty if (A4) holds. Denote

Γ0(A) = {η0 ∈ R|η0 ≥ ρ(A) s.t. ‖Ak‖ = O(ηk0 )},

M0(η0) = inf

{
M0 ∈ R|M0 ≥ 1, η0 ∈ Γ0(A) s.t.‖Ak‖ ≤ M0η

k
0 , k ∈ N

}
,

Γ1(X ) =

{
η1 ∈ R|ρΛ(X ) ≤ η1 < 1 s.t.‖ (A(LG ,X ))

k ‖ = O(ηk1 ),G ∈ G

}
,

M1(η1) = inf

{
M1 ∈ R|M1 ≥ 1, η1 ∈ Γ1(X ) s.t.

‖ (A(LG ,X ))
k ‖ ≤ M1η

k
1 , k ∈ N,G ∈ G

}
.

Then by Lemma A.1, Γ0(A) is nonempty and M0(η0) is well defined for any X ∈
Rm×n. Since (A3) holds, it can be seen that each G ∈ G is strongly connected. Thus,
if X ∈ Ω, then Γ1(X ) is nonempty and M1(η1) is well defined. Denote

(3.2)

R(X , η0, η1) = max

{
C1C2M1(η1),M0(η0)η

T
0 ,M1(η1)

}
,

ρ1(X , η0, η1) =
(
max{C1C2M1(η1), 1}

) 1
τ

η
1− T

τ+1

1

(
4
√
NR(X , η0, η1)

) T
τ+1

,

C3(X , η0, η1) = max

{
4
√
NR(X , η0, η1)

(ρ1(X , η0, η1))T
, C1C2M1(η1)

}
,

W (X , η0, η1) = T ln
(
4
√
NR(X , η0, η1)

)
+ ln

(
max{C1C2M1(η1), 1}

)
+ (1− T ) ln(η1),

s(X , η0, η1) =
W (X , η0, η1)

−2 ln(η1)

+

√
W 2(X , η0, η1)− 4 ln(η1) ln(max{C1C2M1(η1), 1})

−2 ln(η1)
.
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Let τ = inf{ti+1− ti| Gσ(t) is strongly connected at [ti, ti+1), i = 0, 1, . . .} as the mini-
mum dwell time of those strongly connected digraphs of the communication topology
flow {Gσ(t), t ∈ N}. Then we have τ ≥ 1 and the following result.

Lemma 3.1. For the dynamic network (A,B,Gσ(t)), suppose that (A1)–(A5) hold
and τ > τ∗, where

τ∗ � inf
X∈Ω

inf
η0 ∈ Γ0(A),
η1 ∈ Γ1(X )

s(X , η0, η1).

Then there exist K ∈ Rm×n, C3 ∈ R, and ρ1 ∈ R such that the distributed control pro-
tocol (3.1) can ensure the dynamic network to achieve synchronization exponentially
fast, and ||δ(t)|| ≤ C3‖δ(0)‖ρt1, t ∈ N.

The proof of Lemma 3.1 is put in the appendix.

Remark 3.2. We say that a sequence of digraphs is frequently strongly connected
if it satisfies (A5). If the communication topology flow is composed of undirected
graphs, then (A5) is equivalent to the frequent connectivity condition [19]. For the
continuous-time linear multiagent systems with undirected communication topologies,
[19] requires the dwell time τ be uniformly bounded away from zero for those connected
graphs. Different from [19], Lemma 3.1 is concerned with the discrete-time case where
the systems cannot be stabilized with any fast speed, so a sufficiently large dwell time
for the digraphs being strongly connected is needed here.

Remark 3.3. We can derive explicit expression of τ∗ for the case of first-order
dynamics. Suppose that the agent dynamics are given by

(3.3) xi(t+ 1) = axi(t) + ui(t), i = 1, . . . , N,

where a > 1. The communication topology flow {Gσ(t), t ∈ N} is composed of
undirected graphs. For this case, A = a, B = 1, and C1 = C2 = 1. By the definition
of Ω, we know that if (A4) holds, then Ω = (a−1

λm
, a+1
λM

). Since Gσ(t), t ∈ N, are
undirected, A(LG ,X ) is diagonal for all G ∈ G . By Lemma A.1, one can see that for
any given η0 ≥ a and η1 ≥ ρΛ(X ), there is M0(η0) = M1(η1) = 1. From (3.2) and the
definition of τ∗, we get that

(3.4)

τ∗ = inf
X∈Ω

inf
η0 ∈ Γ0(A),
η1 ∈ Γ1(X )

s(X , η0, η1)

= inf
X∈Ω

s
(X , a, ρΛ(X )

)
= s

(
2a

λm + λM
, a, ρΛ

(
2a

λm + λM

))

=
T ln(4

√
NaT ) + (1− T ) ln(aλM−λm

λM+λm
)

− ln(aλM−λm

λM+λm
)

.

Remark 3.4. Consider the dynamic network with second-order dynamics{
pi(t+ 1) = pi(t) + vi(t),

vi(t+ 1) = vi(t) + ui(t),
i = 1, . . . , N.

The communication topology flow {Gσ(t), t ∈ N} is composed of undirected graphs.
Here, A = [ 1 1

0 1 ] , B = [ 01 ], and C1 = C2 = 1. Let K = [k1, k2] ∈ R1×2. Take
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k2 ∈ (0, 4β
λM

), k1 = βk2, where β is a constant satisfying

⎧⎪⎨
⎪⎩

β ∈
(
2 +

√
4− 3λM/λm

4
, 1

)
, λM/λm < 4/3,

β ∈ (0, 1), λM/λm ≥ 4/3.

Then similarly to the proof of Lemma 3.1, it can be shown that if (A1)–(A5) hold
and

τ > inf
ε ∈ (0,W (β))

(1 +
√
2)

·

(
T ln
(
4
√
N max

{√
2N−2(1+ 2

ε )
2N−3,

√
3
T
})

+(2N−3) ln
(√

2N−2(1+ 2
ε )
))

−2 ln
(√

1−4β(1−β)λm/λM+ε5
√
3
) +

T − 1

2
,

where W (β) =
1−

√
1−4β(1−β)λm/λM

5
√
3

, then there exists K ∈ R1×2 such that the control

protocol (3.1) can drive the system to synchronization exponentially fast.

Remark 3.5. For an undirected connected graph, the ratio between the minimum
and the maximum nonzero Laplacian eigenvalues is a measure of its synchronizability
[22]. From Remarks 3.3 and 3.4, τ∗ is closely related to λm/λM , which can be viewed
as the synchronizability of the communication topology flow {Gσ(t), t ∈ N}.

It is worth pointing out that even for the case of precise communication, our result,
Lemma 3.1, is not covered by the existing literature on the synchronization of linear
multiagent systems. In [20], Su and Huang proved that a linear multiagent system
with a jointly connected communication topology flow can achieve synchronization by
the control protocol (3.1). Compared with [20] for neutrally stable agents, the agents
considered in Lemma 3.1 are unstable. Furthermore, Lemma 3.1 gives the convergence
speed of synchronization errors. Below we will give an example with unstable agent
dynamics and a jointly connected communication topology flow. It is found that there
is no control gain to make the system achieve synchronization. From this example, we
can see that for the case with unstable agent dyanmics, generally speaking, the joint
connectivity condition of the communication topology flow is not enough to ensure
synchronization.

Example 3.6. Consider a dynamic network with 3 agents given by

(3.5) xi(t+ 1) = axi(t) + ui(t), i = 1, 2, 3,

where a >
√
2 + 4

√
3. The communication topology flow {Gσ(t), t ∈ N} is composed

of undirected graphs. Here, Gσ(t) switches between two graphs G1 and G2 given by
Figure 2, σ(t) = 1 for t = 2k, and σ(t) = 2 for t = 2k + 1, k ∈ N. It can be seen that
{Gσ(t), t ∈ N} is jointly connected. The control protocol is given by

(3.6) ui(t) = h
3∑

j=1

aij(t)(xj(t)− xi(t)), h ∈ R, i = 1, 2, 3.

By (3.5) and the switching rule of σ(t), we have

(3.7) δ(2k) = Āδ(2(k − 1)), k ∈ N,



QUANTIZED SYNCHRONIZATION WITH SWITCHING TOPOLOGY 283

Fig. 2. G1 and G2.

where

Ā =

⎛
⎝a(a− h) h(a− h) h2

ah (a− h)2 h(a− h)
0 ah a(a− h)

⎞
⎠ .

Let

Ξ =

⎛
⎝1 1 1
0 1 0
0 0 1

⎞
⎠ ,

δ̃(t) = Ξδ(t), and δ̃(t) = (δ̃1(t), δ̃2(t), δ̃3(t))
H = (0, δ2(t), δ3(t))

H . Then from (3.7), we
know that (

δ̃2(2k)

δ̃3(2k)

)
= Ãk

(
δ̃2(0)

δ̃3(0)

)
,

where

Ã =

(
a2 − 3ah+ h2 −h2

ah a2 − ah

)
,

whose characteristic polynomial |λI− Ã| = λ2+a1λ+a0 with a1 = −(2a2−4ah+h2)
and a0 = a2(a− 2h)2. Then by the jury criteria and some direct calculation, we can
prove that not all of Ã’s eigenvalues are inside the unit circle no matter what the
control gain h takes. Noting that δ̃2(0) and δ̃3(0) can be given arbitrarily, one can see
that δ(t) does not vanish as t → ∞ for any given initial values.

Remark 3.7. In [21], Qin, Gao, and Yu studied the synchronization control of
unstable agents over jointly connected network topologies when the input matrix of
each agent is full of row rank (see [21, Theorem 1]). Theorem 1 of [21] requires that
the maximal modulus of the eigenvalues of the agent state matrix, i.e., the most
unstable mode of the agent dynamics, must be less than 1/(1 − μT0(N−1))(N−1)T0 ,
where N is the number of agents, T0 is the upper bound of the joint-connectivity
intervals, and μ ∈ (0, 1) is a constant dependent on the weighted adjacency matrices
of the topology flow. By the definition of μ, one can verify that μ must belong to
(0, α

d+α
), where d is the largest diagonal element of all possible Laplacian matrices,

and α is the lower bound of the weighting factors. This means that though the agent
dynamics of [21] can be unstable, the unstable modes should be close enough to the
unit circle of the complex plane. Specifically, for the topology flow given in Example
3.6, one can verify that the unstable mode a should be less than 1.09 for meeting the

conditions of Theorem 1 of [21], however, here, a >
√
2 + 4

√
3 > 2.9. So, Example 3.6

is consistent with [21], and tells us that if the agent dynamics is sufficiently unstable,
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then generally the joint connectivity of the communication topology flow does not
suffice for synchronization.

3.2. Communication and control protocols. Now we consider the case of
finite-level quantized communication. Here, each communication channel is digital
and has finite bandwidth. We have the following assumption.
(A3

′
) Gσ(t) is undirected, t ∈ N.

Since the communication topology flow is time varying, each communication
channel switches between active and inactive status discontinuously. If we use the
broadcasting-type encoders and decoders proposed in [8], then the inner state of each
encoder may be inconsistent with that of its neighbor’s decoder due to the switch-
ing channels. Motivated by [10], we propose a dynamic encoding-decoding scheme
which depends on the activeness of the communication channels: for each channel
(j, i), j ∈ Ni, i = 1, . . . , N , if it is active, then the sender j quantizes and encodes
its information and sends it to the receiver i. After receiving the information, agent i
estimates j’s state by the decoder. The encoder and the decoder of (j, i) update their
inner states adaptively according to whether the channel (j, i) is active or not. The
encoder Θji(t) associated with (j, i) is given by

(3.8) Θji(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξji(0) = 0,

ξji(t) = Aξji(t− 1) + aij(t)g(t)sji(t),

sji(t) = Qji
t

(
xj(t)−Aξji(t− 1)

g(t)

)
,

where sji(t) is the output, which will be transmitted to agent i if (j, i) is active, ξji(t)
is the inner state, and g(t) > 0 is the scaling function. Here, we take g(t) = g0γ

t,
0 < γ < 1. The decoder Ψji(t) maintained by agent i is given by

(3.9) Ψji(t) =

{
x̂ji(0) = 0,

x̂ji(t) = Ax̂ji(t− 1) + aij(t)g(t)sji(t),

where x̂ji(t) is the output of Ψji(t), which represents the estimation of agent j’s
state. From (3.8) and (3.9), it can be seen that x̂ji(t) = ξji(t), t ∈ N. Denote
Eji(t) = xj(t)− ξji(t), j ∈ Ni, i = 1, . . . , N as the state estimation errors. Here, the

Qji
t (·) are uniform quantizers,

(3.10) Qji
t (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, −1

2
≤ y <

1

2
,

i, i− 1

2
≤ y < i+

1

2
,

Lji(t), y ≥ Lji(t)− 1

2
,

−Qji
t (−y), y < −1

2
,

for any y ∈ R, and 2Lji(t) + 1 is known as the quantization level. Denote Δji(t) =
xj(t)−Aξji(t−1)

g(t) −sji(t) as the quantization error of Qji
t (·). For y = (y1, . . . , yn)

H ∈ Rn,

let Qji
t (y) = (Qji

t (y1), . . . , Q
ji
t (yn))

H , respectively.
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Fig. 3. G′
1 and G′

2.

Based on the above encoding-decoding scheme, we propose the following class of
certainty-equivalence-principle-based control protocols:

(3.11) U =

⎧⎨
⎩ui(t), i = 1, . . . , N, t ∈ N | ui(t) = K

∑
j∈Ni

aij(t)(x̂ji(t)− ξij(t))

⎫⎬
⎭ ,

where K ∈ Rm×n is the control gain matrix to be designed.

Remark 3.8. Here, we only design encoders and decoders for each (j, i), j ∈ Ni,
i = 1, . . . , N . According to (A2), we have ui(t) = K

∑
j∈Ni

aij(t)(x̂ji(t) − ξij(t)) =

K
∑N

j=1 aij(t)(x̂ji(t)− ξij(t)). Similarly to the certainty equivalence principle, we use
the estimation of the agents’ states instead of the real states to construct the control
protocol in (3.11). The effectiveness of the protocols will be shown below.

3.3. Convergence analysis. Before showing the main results, we first make
the following assumptions.

(A6) There exists a known constant Cx > 0 such that maxi∈{1,...,N} ‖xi(0)‖∞ ≤
Cx.

(A7) For any i ∈ {1, . . . , N}, j ∈ Ni, there exists T ji
1 > 0 such that for any t ∈ N,

there is t∗ ∈ [t, t+ T ji
1 ) satisfying aij(t

∗) = 1.

Remark 3.9. If (A7) holds, then we say that the channels (j, i), j ∈ Ni, i =
1, . . . , N , are frequently active. In fact, the frequent connectivity of topologies and
the frequent activeness of edges are independent. For example, the topologies in
Example 3.6 are not connected at any time, but the edges (1,2) and (2,3) are frequently
active with periodic T 12

1 = T 23
1 = 2. In addition, consider two graphs G′

1 = {V , E
′
1}

and G′
2 = {V , E

′
2} in Figure 3, where V = {1, 2, 3}, E

′
1 = {(1, 2), (2, 3), (1, 3)}, and

E
′
2 = {(2, 3), (1, 3)}. If the communication topology flow switches in the following

way, when t = t2i, Gσ(t) = G′
1, and when t = t2i+1, Gσ(t) = G′

2, i = 0, 1, . . . , where
{ti, i ∈ N} is a sequence of switching times and satisfies limi→∞(ti+1 − ti) = ∞, then
Gσ(t) is always connected but the edge (1, 2) is not frequently active.

The main theorem is given below.

Theorem 3.10. For a dynamic network (A,B,Gσ(t)), assume (A1), (A2), (A3
′
),

(A4)–(A6) hold, and τ > τ∗ with τ∗ defined in Lemma 3.1. Then there exist com-
munication and control protocols (3.8), (3.9), (3.10), (3.11) such that for any given
X(0) ∈ BCx , the dynamic network achieves synchronization exponentially fast. Fur-
thermore, if (A7) holds, then the exponential synchronization can be achieved with
finite bits of information exchange per time step.

Proof. It can be easily seen that Assumption (A3
′
) implies (A3). Select the

control gain, parameters of the encoders, decoders, and quantizers as in the following
steps (a)–(d).
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(a) By Lemma A.3, there exist K∗ ∈ Rm×n and two constants C3 ∈ R, ρ1 ∈ R

such that the solution of the linear switching system

w(t+ 1) = (IN ⊗A− LGσ(t)
⊗BK∗)w(t)

has the property that ‖w(t)‖ ≤ C3‖w(0)‖ρt1, t ∈ N. Take K = K∗.
(b) Take γ ∈ (ρ1, 1), where ρ1 is defined in (a). By the proof of Lemma A.3,

it can be seen that if (A1)–(A5) hold, then the value of C3 and ρ1 can be specified
explicitly.

(c) Denote supt∈N
maxi=1,...,N degini (t) by d∗, where degini (t) is the in-degree of

agent i at time t. Take
(3.12)

g0 > max

{
2‖A‖∞Cx(γ − ρ1)

/(
(γ − ρ1)‖A‖∞ + 4(d∗)2n

√
N‖BK‖‖B‖∞‖K‖∞C3

+ 2d∗(γ − ρ1)
√
n‖B‖∞‖K‖∞

)
,
2Cx(γ − ρ1)√
nd∗‖BK‖

}
.

(d) Denote

M̃ =
‖A‖∞
2γ

+ H̃,

where

H̃ =
2(d∗)2n

√
N‖BK‖‖B‖∞‖K‖∞C3

γ(γ − ρ1)
+

d∗
√
n‖B‖∞‖K‖∞

γ
.

For i ∈ {1, . . . , N}, j ∈ Ni, take Lji(1) = �M̃ − 1
2�, and for t ≥ 2,

(3.13) Lji(t) =

{ ⌈
‖A‖∞

γ

(
Lji(t− 1) + 1

2

)
+ H̃ − 1

2

⌉
, aij(t− 1) = 0

�M̃ − 1
2�, aij(t− 1) = 1

.

By (2.1), we have

(3.14) X(l + 1) = (IN ⊗ A)X(l) + (IN ⊗B)U(l), l ∈ N.

For any l ∈ N, denote ai(l) = (ai1(l), . . . , aiN (l))H , αi(l) = (a1i(l), . . . , aNi(l))
H ,

Σ1(l) = diag(aH1 (l), . . . , aHN (l)), Σ2(l) = diag(αH
1 (l), . . . , αH

N (l)), and

Ê(l) =
(
EH

11(l), E
H
12(l), . . . , E

H
1N (l), EH

21(l), . . . , E
H
NN (l)

)H
,

Ē(l) =
(
EH

11(l), E
H
21(l), . . . , E

H
N1(l), E

H
12(l), . . . , E

H
NN (l)

)H
.

Then by (3.11), we have U(l) = (−LGσ(l)
⊗K)X(l)+(Σ1(l)⊗K)Ê(l)−(Σ2(l)⊗K)Ē(l).

This together with (3.14) leads to

(3.15)
X(l + 1) = (IN ⊗A− LGσ(l)

⊗BK)X(l)

+ (Σ1(l)⊗BK)Ê(l)− (Σ2(l)⊗BK)Ē(l), l ∈ N.

By Assumption (A3
′
), we have aij(l) = aji(l). Then it can be seen that for any l ∈ N,

(1H
N ⊗ In)

[
(Σ1(l)⊗BK)Ê(l)− (Σ2(l)⊗BK)Ē(l)

]
= 0.
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This together with 1HLGσ(l)
= 0 leads to

(3.16) (1H ⊗ In)X(l + 1) = A(1H ⊗ In)X(l), l ∈ N.

From (3.15) and (3.16), we have
(3.17)

δ(l) = X(l)− 1

N
(11T ⊗ In)X(l)

= (IN ⊗A− LGσ(l−1)
⊗BK)δ(l − 1)

+ (Σ1(l − 1)⊗BK)Ê(l − 1)− (Σ2(l − 1)⊗BK)Ē(l − 1)

=

l−1∏
h=0

(IN ⊗A− LGσ(h)
⊗BK)δ(0)

+

l−1∑
h=0

[
l−1∏

j=h+1

(IN ⊗A− LGσ(j)
⊗BK)

(
(Σ1(h)⊗BK)Ê(h)

− (Σ2(h)⊗BK)Ē(h)
)]

, l ∈ N.

Let z(l) =
∏l−1

h=0(IN ⊗ A − LGσ(h)
⊗ BK)δ(0), l > 0 and z(0) = δ(0). Then, z(l) =

(IN ⊗A−LGσ(l−1)
⊗BK)z(l− 1), and (1H

N ⊗ In)z(l) = 0, l ∈ N. By Lemma A.3, one
can see that

(3.18) ‖z(l)‖ ≤ C3‖z(0)‖ρl1 = C3‖δ(0)‖ρl1, l ∈ N.

For a positive integer h, let v(l) =
∏l−1

j=h+1(IN⊗A−LGσ(j)
⊗BK)

[
(Σ1(h)⊗BK)Ê(h)−

(Σ2(h)⊗BK)Ē(h)
]
, l > h+1, and v(h+1) = (Σ1(h)⊗BK)Ê(h)−(Σ2(h)⊗BK)Ē(h),

and v(l) = 0 when 0 ≤ l < h+ 1. Then by the definition of v(l), we have

(3.19) v(l) = (IN ⊗A− LGσ(l−1)
⊗BK)v(l − 1).

Since (1H
N ⊗ In)[(Σ1(l) ⊗ BK)Ê(l) − (Σ2(l) ⊗ BK)Ē(l)] = 0, it can be seen that

(1H
N ⊗ In)v(l) = 0, l ∈ N. By Lemma A.3, we know that

(3.20) ‖v(l)‖ ≤ 2
√
nNd∗C3ρ

l−1−h
1 ‖BK‖ max

i,j|aij(h)=1
‖Eij(h)‖.

From (3.17), (3.18), and (3.20), we have
(3.21)

‖δ(l)‖ ≤ C3ρ
l
1‖δ(0)‖+ 2

√
nNd∗‖BK‖C3

l−1∑
h=0

ρl−1−h
1 max

i,j|aij(h)=1
‖Eij(h)‖, l ∈ N.

Next we prove that by selecting the parameters of the communication and control
protocols as in (a)–(d), the quantizers will never be saturated. For any (i, j), i ∈ Nj ,
j ∈ {1, . . . , N}, at the time l = 1 we have

(3.22)
xi(1)−Aξij(0)

g(1)
=

xi(1)

g0γ
.

By (2.1) and (3.11), we have xi(1) = Axi(0). Then from (3.22), we know that∥∥∥∥xi(1)−Aξij(0)

g(1)

∥∥∥∥
∞

≤ ‖A‖∞Cx

g0γ
.
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Noting (3.12), we have
∥∥(xi(1)−Aξij(0))

/
g(1)

∥∥
∞ ≤ M̃ ≤ Lij(1) +

1
2 . So, the quan-

tizers are not saturated at l = 1.
Assuming that the quantizers are not saturated at l = 1, 2, . . . , t − 1, it can be

seen that ‖Δij(l)‖∞ ≤ 1
2 , l = 1, . . . , t− 1. Now, consider the time l = t. By (2.1), we

have

(3.23)
xi(t)−Aξij(t− 1) = Axi(t− 1) +Bui(t− 1)−Aξij(t− 1)

= AEij(t− 1) + Bui(t− 1).

By (3.11), we know that

ui(l) = K
N∑
i=1

aij(l)(δj(l)− δi(l)) +K
N∑
j=1

aij(l)Eij(l)−K
N∑
j=1

aji(l)Eji(l), l ∈ N,

which leads to

(3.24) ‖ui(l)‖∞ ≤ 2d∗‖K‖∞‖δ(l)‖+ 2d∗‖K‖∞ max
i,j|aij(l)=1

‖Eij(l)‖, l ∈ N.

We first give an upper bound of maxi,j|aij(l)=1 ‖Eij(l)‖, l = 1, . . . , t− 1. From (3.8),
we have

(3.25) Eij(l) = (1 − aij(l))(xi(l)−Aξij(l − 1)) + aij(l)g(l)Δij(l), l ∈ N.

By (3.25), we can see that Eij(l) = g(l)Δij(l) if aij(l) = 1, and Eij(l) = xi(l) −
Aξij(l − 1) otherwise. Since ‖Δij(l)‖∞ ≤ 1

2 , l ≤ t − 1, and noting (3.25), we have

maxi,j|aij(l)=1 ‖Eij(l)‖ ≤
√
ng0
2 γl, l = 1, . . . , t−1. This together with (3.12) and (3.21)

leads to

(3.26) ‖δ(l)‖ ≤ n
√
Nd∗‖BK‖C3g0

γ − ρ1
γl, l = 1, . . . , t− 1.

By (3.26), (3.23), and (3.24), it can be seen that

(3.27)

‖xi(t)−Aξij(t− 1)‖∞ ≤ ‖A‖∞‖Eij(t− 1)‖∞

+
2(d∗)2g0n

√
NC3‖BK‖‖B‖∞‖K‖∞

γ − ρ1
γt−1

+ d∗
√
ng0‖B‖∞‖K‖∞γt−1

and

(3.28)

∥∥∥∥xi(t)−Aξij(t− 1)

g(t)

∥∥∥∥
∞

≤ ‖A‖∞ ‖Eij(t− 1)‖∞
g(t)

+
d∗
√
n‖B‖∞‖K‖∞

γ

+
2(d∗)2n

√
NC3‖BK‖‖B‖∞‖K‖∞
γ(γ − ρ1)

.

If aij(t − 1) = 1, then Eij(t − 1) = g(t − 1)Δij(t − 1) and ‖Eij(t − 1)‖∞ ≤ g0
2 γ

t−1.
From (3.28), we have

(3.29)

∥∥∥∥xi(t)−Aξij(t− 1)

g(t)

∥∥∥∥
∞

≤ ‖A‖∞
2γ

+
2(d∗)2n

√
NC3‖BK‖‖B‖∞‖K‖∞
γ(γ − ρ1)

+
d∗
√
n‖B‖∞‖K‖∞

γ

= M̃ ≤ Lij(t) +
1

2
.
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Thus, we can see that if aij(t − 1) = 1, the quantizer Qij
l (·) is not saturated at time

l = t.
If aij(t − 1) = 0, then, by (3.25), Eij(t − 1) = xi(t − 1)− Aξij(t − 2). Since the

quantizers are not saturated before t, we can see that ‖xi(t − 1) − Aξij(t − 2)‖∞ ≤
g(t− 1)(Lij(t− 1) + 1

2 ). This together with (3.28) leads to

(3.30)

∥∥∥∥xi(t)−Aξij(t− 1)

g(t)

∥∥∥∥
∞

≤ ‖A‖∞
γ

(
Lij(t− 1) +

1

2

)
+

d∗
√
n‖B‖∞‖K‖∞

γ

+
2(d∗)2n

√
NC3‖BK‖‖B‖∞‖K‖∞
γ(γ − ρ1)

=
‖A‖∞

γ

(
Lij(t− 1) +

1

2

)
+ H̃

≤ Lij(t) +
1

2
.

From (3.30), we can see that if aij(t − 1) = 0, then the quantizer Qij
l (·) is also not

saturated at l = t. By induction, we know that the quantizers will never be saturated,
so ‖Δij(t)‖∞ ≤ 1

2 , t ∈ N, which together with (3.21) and (3.26) leads to

(3.31) ‖δ(t)‖ ≤ n
√
Nd∗‖BK‖C3g0

γ − ρ1
γt = O(γt), t ∈ N.

From the above, we can see that multiagent systems achieve synchronization expo-
nentially fast.

Furthermore, if (A7) holds, let T1 = maxi,j T
ji
1 . Then we have

sup
t∈N

max
j∈Ni,i=1,...,N

Lji(t)

≤
(‖A‖∞

γ

)T1
(
M̃ +

1

2

)
+

(‖A‖∞/γ)T1 − 1

‖A‖∞/γ − 1

(‖A‖∞
2γ

+ H̃ +
1

2

)
< ∞.(3.32)

So, exponential synchronization can be achieved with finite bits of information ex-
change.

Remark 3.11. Lemma 3.1 and Theorem 3.10 are consistent with the case of fixed
topologies in [9]. In fact, if the topology flow is a fixed digraph and strongly connected,
then τ = +∞, which definitely satisfies τ > τ∗. From the numerical examples in
section 4, we can see that the estimation for the minimum dwell time required is still
conservative and might be improved in future investigation.

By Theorem 3.10 and Remark 3.3, we have the following corollary.

Corollary 3.12. For a dynamic network (a, 1,Gσ(t)), a > 1, assume that (A1),

(A2), (A3
′
), (A4)–(A7) hold, and τ > τ∗, where τ∗ is given in Remark 3.3. Then there

exist communication and control protocols (3.8), (3.9), (3.10), (3.11) such that for any
given X(0) ∈ BCx , the dynamic networks achieves synchronization exponentially with
less than ⌈

aT1

[
a+ 1

2
+

8a2(d∗)2
√
NC3

(1− ρ1)(λm + λM )2
+

2ad∗

λm + λM

]

+
aT1 − 1

a− 1

[
a+ 1

2
+

8a2(d∗)2
√
NC3

(1 − ρ1)(λm + λM )2
+

2ad∗

λm + λM

]
+

1

2

⌉
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bits of information exchange per step, where C3 = 4
√
NaT

ρT
1

, ρ1 = (aλM−λm

λM+λm
)1−

T
τ+1 ·

(4
√
NaT )

T
τ+1 , and �x� deotes the minimum integer equal to or larger than x for any

given real number x.

Proof. By Remark 3.3 and Lemma A.2, we know that there exist X = 2a
λM+λm

,

η0 = a, η1 = η2 = aλM−λm

λM+λm
such that ρ1(X, η0, η1, η2) = ρ1 < 1. By the proof of

Lemma A.3 and noting (A.29), we know that for the class of switching systems

w(t+ 1) = (IN ⊗ a− LGσ(t)
⊗K∗)w(t),

where w(t) ∈ RN , t ∈ N, there is ‖w(t)‖ ≤ C3‖w(0)‖ρt1, t ∈ N, where

(3.33) K∗ =
2a

λM + λm
.

Take K = K∗. Similarly to the proof of Theorem 3.10 and the method of parameter
selection, and noting (3.33), we have

sup
t∈N

max
j∈Ni,i=1,...,N

Lji(t) ≤ f(γ),

where

f(γ) =

(
a

γ

)T1
[
a

2γ
+

1

2
+

8a2(d∗)2
√
NC3

γ(γ − ρ1)(λm + λM )2
+

2ad∗

γ(λm + λM )

]

+
(a/γ)T1−1

a/γ − 1

[
8a2(d∗)2

√
NC3

γ(γ − ρ1)(λm + λM )2
+

2ad∗

γ(λm + λM )
+

1

2
+

a

2γ

]
.

Noting that f(γ) is a continuous function of γ, we know that there exist a
γ∗ such that supt∈N maxj∈Ni,i=1,...,N Lji(t) ≤ f(γ∗) < limγ→1 f(γ) + 1

2 =

aT1 [a+1
2 + 8a2(d∗)2

√
NC3

(1−ρ1)(λm+λM )2 + 2ad∗
λm+λM

] + aT1−1
a−1 [ 8a2(d∗)2

√
NC3

(1−ρ1)(λm+λM )2 + 2ad∗
λm+λM

+ a+1
2 ] + 1

2 .

Take γ = γ∗ and g0 as in (3.12). Then by Theorem 3.10, we get the conclusion.

4. Numerical example. In this section, we give some numerical examples to
illustrate the effectiveness of our protocols. We may see that for the dynamic networks
with unstable agent dynamics, a large enough dwell time for connected topologies and
large enough number of quantization levels are needed for achieving synchronization.
It can also be seen that the results derived in this paper may be conservative in
practise. How to reduce the conservativeness of the results will be a future interesting
topic.

Consider a multiagent system with 3 agents, each with the following dynamics:

xi(t+ 1) = 1.2xi(t) + ui(t) , i = 1, 2, 3.

The initial states x1(0), x2(0), and x3(0) are randomly selected in (−6, 6). There
are two undirected graphs G′′

1 = {V , E
′′
1 } and G′′

2 = {V , E
′′
2 }, where V = {1, 2, 3},

E
′′
1 = {(1, 2)}, and E

′′
2 = {(1, 2), (2, 3)}. See Figure 4. The communication topology

flow {Gσ(t), t ∈ N} switches between G′′
1 and G′′

2 in the following way: At time t = 0,
σ(0) = 1 and σ(t) keeps in mode 1 for two steps, then it switches to mode 2 at t = 2
and keeps for τ steps, then it switches back to mode 1 and so on. It can be seen that
(A1)–(A7) hold with T = 2, Cx = 6, T 12

1 = 1, and T 23
1 = 3.
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Fig. 4. G′′
1 and G′′

2 .

Fig. 5. The trajectories of the synchronization errors when τ = 3.

Fig. 6. The trajectories of the synchronization errors when τ = 1.

For the case of precise communication, the control protocol takes the form of (3.1).
Take the control gain K = 0.5; by Lemma 3.1 it can be derived that τ∗ = 10 for this
case. Here, we first take τ = 3, and the trajectories of synchronization errors are
given in Figure 5. It can be seen that the τ∗ derived from Lemma 3.1 is conservative.
Taking τ = 1, the trajectories of synchronization errors are given in Figure 6. It is
shown that the synchronization may fail if the dwell time is too small.
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Fig. 7. The trajectories of the synchronization errors when M∗ = 20,H∗ = 10.

Fig. 8. The trajectories of the synchronization errors when M∗ = 8, H∗ = 4.

For the case of finite-level quantized communication, the control protocol takes the
form of (3.11). Take K = 0.5, g0 = 0.16, and γ = 0.98. The number of quantization
levels is adjusted in the following way. Take Lji(1) = �M∗ − 1

2�, and for t ≥ 2,

(4.1) Lji(t) =

{ ⌈
1.2
0.98

(
Lji(t− 1) + 1

2

)
+H∗ − 1

2

⌉
, aij(t− 1) = 0,

�M∗ − 1
2�, aij(t− 1) = 1.

First, let M∗ = 20 and H∗ = 10 in (4.1). The trajectories of synchronization errors
are given in Figure 7. Second, let M∗ = 8 and H∗ = 4 in (3.13). The trajectories
of synchronization errors are given in Figure 8. It can be seen that if the number of
quantization levels is too small, the protocols may also fail for synchronization.

5. Conclusion. In this paper, we studied the synchronization of discrete-time
linear multiagent systems with finite communication data rate and switching topology
flows. We proposed a class of quantized observer-based encoding-decoding communi-
cation schemes and a class of certainty-equivalence-principle-based control protocols.
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To avoid the information mismatching due to switching topologies, adaptive encoders
and decoders are designed with the number of quantization levels dynamically ad-
justed according to the status of the associated channels for the last time step. It is
shown that if the pairs of the agents’ state matrices and the control matrices multi-
plied by Laplaian eigenvalues of the weakly connected components are simultaneously
stabilizable, the communication topology flow is frequently connected, and the dwell
time is sufficiently large for the digraphs being strongly connected, then there ex-
ist such protocols leading to synchronization exponentially fast. Furthermore, if the
channels are frequently active, then finite bits of information exchange per step can
guarantee the exponential synchronization. It is shown that the data rate is closely
related to the unstable mode of agent dynamics, the number of agents, the frequency
of graph connectivity, and the ratio of the smallest and largest nonzero Laplacian
eigenvalues of the connected components.

In this paper, only switching undirected graphs are considered for the case with
quantized communication. It is more interesting to consider the case with general
switching digraphs. First, the results could be extended to the case with switching
balanced digraphs by using the methodology of [11]. However, the Hadamard product
and associated properties used in [11] would not be applicable and one would need to
develop effective tools to simplify and analyze the closed-loop dynamics. It is more
challenging to consider the case with general switching digraphs, since there would
be no information loop in the graph, the error-compensation-type control protocols
in our paper and [10], [11] will not work any longer. These remain as interesting open
problems for future investigation. Also, the cases with partial measurable states, time
delay, and random switching topology are interesting topics.

Appendix A. The following semimartingale convergence theorem can be found
in [23].

Lemma A.1 (see [23]). For any square matrix A ∈ C
n×n, there exist M ≥ 1,

η ≥ ρ(A) such that

‖Ak‖ ≤ Mηk, k ∈ N,

where M depends on η and the dimension n but is independent of ρ(A). Especially,
if A is a symmetric matrix, then M and η can be equal to 1 and ρ(A), respectively.

Lemma A.2. Assume that (A1)–(A5) hold and τ > τ∗ with τ∗ defined in Lemma
3.1. Then the set Υ = {(X , η0, η1)|X ∈ Ω, η0 ∈ Γ0(A), η1 ∈ Γ1(X ), ρ1(X , η0, η1) <
1, C1C2M1(η1)η

τ
1 < 1} is nonempty.

Proof. By τ > τ∗, we know that there exist X ∈ Ω, η0 ∈ Γ0(A), and η1 ∈ Γ1(X )
such that τ > s(X , η0, η1), which is equivalent to

(A.1)
(
max{C1C2M1(η1), 1}

) 1
τ

η
1− T

τ+1

1 ·
(
4
√
NR(X , η0, η1)

) T
τ+1

< 1.

By the definition of ρ1(X , η0, η1) and noting (A.1), it can be seen that there exist
X ∈ Ω, η0 ∈ Γ0(A), and η1 ∈ Γ1(X ) such that ρ1(X , η0, η1) < 1. By the definition
of Γ1(X ), we know that for any given η1 ∈ Γ1(X ), there is η1 < 1. By the definition
of R(X , η0, η1), we know that R(X , η0, η1) ≥ 1. This together with the definition of

ρ1(X , η0, η1) leads to ρ1(X , η0, η1) > (C1C2M1(η1))
1
τ η1. Noting that ρ1(X , η0, η1) <

1, we have C1C2M1(η1)η
τ
1 < 1. From the above, we can see that Υ is nonempty.
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Proof of Lemma 3.1. Consider an interval [ti, ti+1) during which the communica-
tion topology keeps fixed. By (3.1), we know that U(t) = −(LGσ(t)

⊗K)X(t). From
(2.1), we have

(A.2) X(t+ 1) = (I ⊗A− LGσ(t)
⊗BK)X(t).

From (A.2) and noting that Gσ(t) is balanced, we have

(A.3) x̄(t+ 1) =

(
1

N
1H
N ⊗A

)
X(t) = Ax̄(t).

From (A.2) and (A.3), we know that

(A.4) δ(t+ 1) = (I ⊗A− LGσ(t)
⊗BK)δ(t).

Denote Υ = {(X , η0, η1)|X ∈ Ω, η0 ∈ Γ0(A), η1 ∈ Γ1(X ), ρ1(X , η0, η1, ) < 1,C1C2

·M1(η1)η
τ
1 < 1}. By Lemma A.2, we know that the set Υ is nonempty. Take (K, η0, η1)

∈ Υ.
Now consider two cases.
(1) Gσ(t) is strongly connected on [ti, ti+1).
Transform LGσ(t)

to its Jordan canonical with the transformation matrix ΦGσ(t)
.

Denote δ̃(t) = (ΦGσ(t)
⊗ In)δ(t). By (A.4), we have

(A.5) δ̃(t+ 1) =
(
IN ⊗A− diag

(
0, J

Gσ(t)

2 , . . . , J
Gσ(t)

kGσ(t)

)
⊗BK

)
δ̃(t).

Denote the first n elements of δ̃(t) by δ̃1(t), and the others by δ̃2(t). Since the first

row of ΦGσ(t)
is 1H

N , t ∈ N, we know that δ̃1(t) =
∑N

i=1 δi(t) ≡ 0. By the definition of

A(LGσ(t)
,K), it can be seen that A(LGσ(t)

,K) = IN−1⊗A−diag(J
Gσ(t)

2 , . . . , J
Gσ(t)

kGσ(t)
)⊗

BK and ρ(A(LGσ(t)
,K)) = max1≤i≤kGσ(t)

ρ(A−λi(LGσ(t)
)BK). Since Gσ(t) is strongly

connected on [ti, ti+1), we have λi(LGσ(t)
) ∈ Λ, t ∈ [ti, ti+1). So ρ(A(LGσ(t)

,K)) ≤
ρΛ(K) < 1, t ∈ [ti, ti+1).

By (A.5), we know that

(A.6) δ̃2(t+ 1) = A(LGσ(t)
,K)δ̃2(t)

and

(A.7) δ̃2(ti+1) = (A(LGσ(t)
,K))ti+1−ti δ̃2(ti).

By the definition of Γ1(K), we know that

(A.8) ‖A(LGσ(t)
,K)ti+1−ti‖ ≤ M1(η1)η

ti+1−ti
1 .

This together with (A.7) leads to

(A.9) ‖δ̃2(ti+1)‖ ≤ M1(η1)η
ti+1−ti
1 ‖δ̃2(ti)‖.

Then from (A.9) and noting the definitions of C1 and C2, we can see that

(A.10) ‖δ(ti+1)‖ ≤ C2‖δ̃2(ti+1)‖ ≤ C1C2M1(η1)η
ti+1−ti
1 ‖δ(ti)‖.
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(2) Gσ(t) is not strongly connected on [ti, ti+1).
Divide the graph Gσ(t) into its weakly connected components denoted by Gμ,σ(t), μ

= 1, . . . , sσ(t). It can be seen that Gμ,σ(t) ∈ G and all the Gμ,σ(t) are balanced
digraphs. Denote the vertex set of Gμ,σ(t) by Vμ,σ(t), and its module |Vμ,σ(t)| by
nμ,σ(t). Relabel the agents according to the components they belong to: for any
μ ∈ {1, . . . , sσ(t)}, denote the states of the agents in Gμ,σ(t) by xμ1 (t), . . . , xμnμ,σ(t)

(t).

Denote Xμ(t) = (xH
μ1
(t), . . . , xH

μnμ,σ(t)
(t))H , Uμ(t) = (uH

μ1
(t), . . . , uH

μnμ,σ(t)
(t))H , and

x̄μ(t) = ( 1
nμ,σ(t)

1H
nμ,σ(t)

⊗ In)Xμ(t).

By (3.1), for any given Gμ,σ(t), μ = 1, . . . , sσ(t), we have

Uμ(t) = −(LGμ,σ(t)
⊗K)Xμ(t)

and

(A.11)
(1H

nμ,σ(t)
⊗ Im)Uμ(t) = −(1H

nμ,σ(t)
⊗ Im)(LGμ,σ(t)

⊗K)Xμ(t)

= 0.

By (2.1), we know that

(A.12) xμi(t+ 1) = Axμi (t) +Buμi(t), i = 1, . . . , μnμ,σ(t)
.

This together with (A.11) leads to:

(A.13) (1H
nμ,σ(t)

⊗ In)Xμ(t+ 1) = A(1H
nμ,σ(t)

⊗ In)Xμ(t),

which is equivalent to

(A.14) x̄μ(t+ 1) = Ax̄μ(t), μ = 1, . . . , sσ(t).

Consider any two different agents i and j. We have two subcases.
Subcase (a). If they belong to one weakly connected component Gμ,σ(t), denote

δμk
(t) = xμk(t)− x̄μ(t), k = 1, . . . , nμ,σ(t), and δμ(t) = (δTμ1

(t), . . . , δTμnμ,σ(t)
(t))T . Then

we have

(A.15)
‖xi(t+ 1)− xj(t+ 1)‖ = ‖xi(t+ 1)− x̄μ(t+ 1) + x̄μ(t+ 1)− xj(t+ 1)‖

≤ 2‖δμ(t+ 1)‖.
Similarly to case (1), one can prove that for t ∈ [ti, ti+1),

(A.16) δμ(t+ 1) = (Inμ,σ(t)
⊗A− LGμ,σ(t)

⊗BK)δμ(t).

Transform LGμ,σ(t)
to its Jordan canonical, that is, there exist ΦGμ,σ(t)

, the first row

of which is 1H
nμ,σ(t)

, such that ΦGμ,σ(t)
LGμ,σ(t)

Φ−1
Gμ,σ(t)

= diag(0, J
Gμ,σ(t)

2 , . . . , J
Gμ,σ(t)

kμ,σ(t)
).

Since Gμ,σ(t) ∈ G , we can see that ‖ΦGμ,σ(t)
‖ ≤ C1 and ‖Φ−1

Gμ,σ(t)
‖ ≤ C2. Let δ̃μ(t) =

(ΦGμ,σ(t)
⊗ In)δμ(t). Denote the first n elements of δ̃μ(t) as δ̃μ1(t) and the others as

δ̃μ2(t). It can be seen that δ̃μ1(t) = 0.

Denote Inμ,σ(t)−1 ⊗ A − diag(J
Gμ,σ(t)

2 , . . . , J
Gμ,σ(t)

kGμ,σ(t)
) ⊗ BK as A(LGμ,σ(t)

,K); by

(A.16) we have

(A.17) δ̃μ2(t+ 1) = A(LGμ,σ(t)
,K)δ̃μ2(t).
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Since Gμ,σ(t) ∈ G , noting the definition of Γ1(K) and (A.17), we have

‖δμ(ti+1)‖ ≤ C1C2M1(η1)η
ti+1−ti
1 ‖δμ(ti)‖ ≤ C1C2M1(η1)‖δμ(ti)‖.

According to [19], we know that ‖δμ(t)‖ ≤ ‖δ(t)‖. So by (A.15), if i and j belong to
the same weakly connected component in [ti, ti+1), then we have

(A.18) ‖xi(ti+1)− xj(ti+1)‖ ≤ 2C1C2M1(η1)‖δ(ti)‖.
Subcase (b). If i and j belong to two different weakly connected components

Gμ,σ(t) and Gμ′ ,σ(t), then we have

(A.19)

‖xi(ti+1)− xj(ti+1)‖ = ‖xi(ti+1)− x̄μ(ti+1) + x̄μ(ti+1)− x̄μ′ (ti+1)

+ x̄μ′ (ti+1)− xj(ti+1)‖
≤ ‖δμ(ti+1)‖+ ‖δμ′ (ti+1)‖ + ‖x̄μ(ti+1)− x̄μ′ (ti+1)‖.

From the above, we know that

(A.20) ‖δμ(ti+1)‖ ≤ C1C2M1(η1)‖δ(ti)‖, ‖δμ′ (ti+1)‖ ≤ C1C2M1(η1)‖δ(ti)‖.
By (A.14), we have

(A.21) ‖x̄μ(ti+1)− x̄μ′ (ti+1)‖ = ‖Ati+1−ti(x̄μ(ti)− x̄μ′ (ti))‖.
According to the definition of M0(η0), η0, R(K, η0, η1), and (A.21), we have

‖x̄μ(ti+1)− x̄μ′ (ti+1)‖ ≤ M0(η0)η
ti+1−ti
0 ‖x̄μ(ti)− x̄μ′ (ti)‖

≤ R(K, η0, η1)‖x̄μ(ti)− x̄μ′ (ti)‖.
Next we prove that ‖x̄μ(ti)− x̄μ′ (ti)‖ ≤ 2‖δ(ti)‖. It can be seen that

(A.22) ‖x̄μ(ti)− x̄μ′ (ti)‖ ≤ ‖x̄μ(ti)− x̄(ti)‖+ ‖x̄(ti)− x̄μ′ (ti)‖
and

‖x̄μ(ti)− x̄(ti)‖ =

∥∥∥∥∥
nμ∑
k=1

1

nμ
xμk

(ti)− x̄(ti)

∥∥∥∥∥
=

∥∥∥∥∥
nμ∑
k=1

1

nμ
(xμk

(ti)− x̄(ti))

∥∥∥∥∥
≤

nμ∑
k=1

1

nμ
‖δ(ti)‖ = ‖δ(ti)‖.

With the same method, we know that ‖x̄(ti) − x̄μ′ (ti)‖ ≤ ‖δ(ti)‖. Then by (A.22),
we have ‖x̄μ(ti)− x̄μ′ (ti)‖ ≤ 2‖δ(ti)‖.

By (A.19) and (A.20), we can see that ‖xi(ti+1)−xj(ti+1)‖ ≤ 4R(K, η0, η1)‖δ(ti)‖.
So, if i and j belong to two different components, then ‖xi(ti+1) − xj(ti+1)‖ ≤
4R(K, η0, η1)‖δ(ti)‖. This together with (A.18) and the definition of R(K, η0, η1)
leads to that for case (2): for any i, j ∈ {1, . . . , N}, i �= j, there is

(A.23) ‖xi(ti+1)− xj(ti+1)‖ ≤ 4R(K, η0, η1)‖δ(ti)‖.
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It can be seen that ‖δ(t)‖ ≤ √
N maxi,j ‖xi(t)− xj(t)‖. Then from (A.23), we have

(A.24) ‖δ(ti+1)‖ ≤ 4
√
NR(K, η0, η1)‖δ(ti)‖.

Now we prove that δ(t) tends to 0 exponentially. For any time t ∈ N, there is an
integer i such that t ∈ [ti, ti+1). For any k < i, if Gσ(t) is not strongly connected on
[tk, tk+1), then by (A.24), we know that

(A.25) ‖δ(tk+1)‖ ≤ 4
√
NR(K, η0, η1)‖δ(tk)‖.

Denote [tnk
, tnk+1

), k = 1, 2, . . . , nk ≤ i, as the largest continuous intervals during
which Gσ(t) is not strongly connected, that is, Gσ(t) is not strongly connected in
[tnk

, tnk+1
) but is strongly connected in [tnk−1, tnk

) and [tnk+1
, tnk+1+1). By Assump-

tion (A5), we have tnk+1
− tnk

≤ T , so the topology flow switches at most T times in
each [tnk

, tnk+1
). Then by (A.25), and noting that η1 < 1, we have

‖δ(tnk+1
)‖ ≤ (4

√
NR(K, η0, η1))

T ‖δ(tnk
)‖

≤ (4
√
NR(K, η0, η1))

T

ηT1
η
tnk+1

−tnk

1 ‖δ(tnk
)‖.

By Assumption (A5), we know that on [0, ti), there is at most ti
1+τ such [tnk

, tnk+1
).

Then according to (A.10) and (A.25), we have

(A.26)

‖δ(ti)‖ ≤ (max{C1C2M1(η1), 1}
) ti

τ ηti1 ‖δ(0)‖
(
(4
√
NR(K, η0, η1))

T

ηT1

) ti
τ+1

≤
[
(max{C1C2M1(η1), 1}) 1

τ η
1− T

τ+1

1

(
4
√
NR(K, η0, η1)

) T
τ+1

]ti
‖δ(0)‖

= (ρ1(K, η0, η1))
ti‖δ(0)‖.

If Gσ(t) is not strongly connected on [ti, ti+1), then we have t − ti ≤ ti+1 − ti ≤ T .
Noting that ρ1(K, η0, η1) < 1, then by (A.24) and (A.26), we have

(A.27) ‖δ(t)‖ ≤ 4
√
NR(K, η0, η1)

(ρ1(K, η0, η1))T
(ρ1(K, η0, η1))

t‖δ(0)‖.

If Gσ(t) is strongly connected on [ti, ti+1), then by the definition of ρ1(K, η0, η1), one
can easily see that η1 < ρ1(K, η0, η1). This together with (A.10) and (A.26) leads to

(A.28)
‖δ(t)‖ ≤ C1C2M1(η1)η

t−ti
1 ‖δ(ti)‖

≤ C1C2M1(η1)(ρ1(K, η0, η1))
t‖δ(0)‖.

Noting that C3(K, η0, η1) = max{ 4
√
NR(K,η0,η1)

(ρ1(K,η0,η1))T
, C1C2M1(η1)}, then according to

(A.27) and (A.28), we have

(A.29) ‖δ(t)‖ ≤ C3(K, η0, η1)(ρ1(K, η0, η1))
t‖δ(0)‖, t ∈ N.

So the dynamic network achieves synchronization exponentially and there exist C3 =
C3(K, η0, η1), ρ1 = ρ1(K, η0, η1) such that ‖δ(t)‖ ≤ C3ρ

t
1‖δ(0)‖, t ∈ N.
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Lemma A.3. For a dynamic network (A,B,Gσ(t)) satisfying (A1)–(A5), if τ > τ∗

with τ∗ defined as in Lemma 3.1, then there exists K ∈ Rm×n such that the following
linear switching system

(A.30) w(t + 1) = (IN ⊗A− LGσ(t)
⊗BK)w(t),

where w(t) ∈ RnN and (1H
N ⊗ In)w(0) = 0, is exponentially stable. Precisely, there

exist C3 ∈ R and ρ1 ∈ R, which are independent of w(0), such that ‖w(t)‖ ≤
C3‖w(0)‖ρt1, t ∈ N.

Proof. Define a linear multiagent system with agent dynamics being (2.1) and
its communication topology flow being Gσ(t). Take control protocol (3.1) and let
X(0) = w(0). Since (1H

N ⊗ In)w(0) = 0, then the initial synchronization errors
δ(0) = w(0). By (A.4), one can easily see that the evolution of the synchronization
errors of the defined linear multiagent system is the same as (A.30), so δ(t) ≡ w(t),
t ∈ N. The rest of the proof is very similar to that of Lemma 3.1 and is omitted here
to save space. Noting (A.29), we can see that there exist C3 ∈ R and ρ1 ∈ R such
that ‖w(t)‖ ≤ C3‖w(0)‖ρt1, t ∈ N.
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